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Abstract—Emerging non-volatile memories (NVM), such as
phase change memory (PCM) and Resistive RAM (ReRAM),
incorporate the features of fast byte-addressability and data
persistence, which are beneficial for data services such as file
systems and databases. To support data persistence, a persistent
memory system requires ordering for write requests. The data
path of a persistent request consists of three segments: through
the cache hierarchy to the memory controller, through the bus
from the memory controller to memory devices, and through
the network from a remote node to a local node. Previous work
contributes significantly to improve the persistence parallelism in
the first segment of the data path. However, we observe that the
memory bus and the Remote Direct Memory Access (RDMA)
network remain severely under-utilized because the persistence
parallelism in these two segments is not fully leveraged during
ordering.

In this paper, we propose a novel architecture to further
improve the persistence parallelism in the memory bus and
the RDMA network. First, we utilize inter-thread persistence
parallelism for barrier epoch management with better bank-level
parallelism (BLP). Second, we enable intra-thread persistence
parallelism for remote requests through RDMA network with
buffered strict persistence. With these features, the architecture
efficiently supports persistence through all three segments of the
write datapath. Experimental results show that for local applica-
tions, the proposed mechanism can achieve 1.3× performance
improvement, compared to the original buffered persistence
work. In addition, it can achieve 1.93× performance improvement
for remote applications serviced through the RDMA network.

I. INTRODUCTION

Non-volatile memory (NVM) technologies, such as phase-

change memory (PCRAM), spin transfer-torque magnetic

RAM (STT-RAM), and resistive memristor (ReRAM),

emerges with promising potential to replace DRAM for main

memory [27], [56]. Compared with DRAM technology, NVMs

incorporate the features of fast byte-addressability and disk-

like data persistence in addition to a superior storage density.

Such emerging storage class memories (SCMs) can bridge the

gap between memory and storage, enabling recoverable data

structures in main memory, which is beneficial for key data

services in data centers, such as file systems and databases

[6], [10], [11], [14], [18], [22], [29], [37], [40], [45], [47],

[54], [59]. Consequently, industrial efforts are noticeable in

the area of NVMs. For example, Intel announced 3D XPoint

production for both storage and memory in 2016 [41].

Ensuring recoverability of persistent data in data services,

regardless of power failure or program crash, is not easy

because of the volatile caches and memory operation reorder-

ing during execution. Previous work adopts both software

versioning mechanisms and hardware persistent ordering ca-

pability to achieve this goal [16], [33], [50]. The correctness

of versioning mechanisms relies on the hardware’s capability

to maintain the persistence ordering exactly in the way that

software defines it. Specifically, hardware must ensure that the

requests before a barrier are persisted before the requests after

the barrier [14], [16], [33], [50]. These persistent requests go

through the memory hierarchy with ordering control, following

a datapath (as shown in Figure 1) that can be divided into

three segments: (1) through the cache hierarchy to the memory

controller; (2) through the bus from the memory controller

to memory devices; (3) through the Remote Direct Memory

Access (RDMA) network from a remote node to a local node.

For the first segment of the datapath (through the cache

hierarchy to the memory controller), buffered persistence

methods have been proposed to alleviate the persistent or-

dering overhead in the cache hierarchy, decoupling memory

persistence from core execution for better performance [23],

[25], [26], [35]. However, previous work pays little attention to

the second and the third segments of the persistence datapath.

We observe that the latter two datapath segments, which

include the memory bus and RDMA network, are severely

underutilized during data persistence, because of the failure to

leverage the persistence parallelism. There are two types of

persistence parallelism, intra-thread and inter-thread, in the

persistent datapaths. When two threads are independent from

each other, the persistent requests between them can be freely

scheduled without restrictions, which leads to inter-thread

persistence parallelism. If the hardware provides the ability

to keep tracking of the ordering dependency and manage the

orders to be persisted in the persistent domain finally, there

will be overlaps among these requests when they are processed

in the datapaths, which leads to intra-thread parallelism. We

will explain the impact of these two kinds of parallelism.

Inefficiencies in the Memory Bus. The buffered epoch

memory model provides the inter-thread persistence paral-

lelism in the cache hierarchy which enables multiple re-

quest epochs (a request sequence divided by barriers) flowing

through the cache hierarchy. However, prior work alleviates

persistent barrier constraints without considering the requests

memory location [23], [25], [42]. When the requests in the

same epoch have bank conflicts, they still need to be serviced











queue, there is one BROI entry for every thread, and each

entry only maintains the ordering of requests that it contains.

The BROI controller implements the intra-thread dependency

by blocking a request in a BROI entry until its previous

fences are resolved. Since it is guaranteed that the requests

from different threads are independent from each other, the

requests in different entries of the BROI queue can be flexibly

interleaved to the memory controller.

The remote requests could be transferred through network

controller in order. Then, the requests will be allocated in

remote persist buffer. The remote persist buffer communicates

with NIC to get the length of data block in this operation, then

it identifies the address range of the requests in order to mark

the barrier region of requests and record the fence instruction

in persist entry. After resolving the inter-thread dependency,

the requests will be sent to BROI controller which maintains

the intra-thread ordering control.

2) A Detailed Example. In this subsection, we walk through

the detailed example shown in the Figure 6(b) to illustrate how

the architecture design deals with dependency.

1 The L1 data cache of core 0, D$0, receives a persistent

request StX = x from core 0. 2 After checking the coherence

engine, it has no dependency and one entry of persist buffer

is allocated for this request. 3 Another request, StX = y, is

issued from core 1 to persist data to the same address. 4 D$1

sends a read-exclusive request to D$0. 5 D$0 snoops both

cache and persist buffer and replies there is a request with

ID ”0:0” in dependency region. 6 D$1 allocates an entry for

request Stx= y and marks the dependency request ID in the DP

field. 7 request ”0:0” is sent to BROI queue and BROI queue

schedules this request to memory controller. 8 The memory

controller sends this request to NVM devices and returns an

acknowledgement to persist buffer ( 9 ). 10 The completed

entry is deleted from persist buffer and the corresponding

DP field of request ”1:0” is updated as no dependency. Then

the request ”1:0” will be scheduled to BROI queue. This

case shows how to resolve a direct dependency (persist-

persist dependency). This design also can resolve the epoch-

persist dependency [25]. To note, the buffered strict persistence

model does not change the cache coherence protocol. The

persist buffer is in the cache coherent region and records

the dependency information provided by the cache coherence

engine for inter-thread conflict avoidance.

D. BLP-aware Barrier Epoch Management

The guidelines for barrier epoch management are as follows:

1) Persistent ordering of requests in one BROI entry must be

obeyed, which can be achieved by forcing the requests after a

barrier to stay in the BROI queues until all the requests before

the barrier have been executed; 2) for the requests in different

BROI entries with inter-thread persistence parallelism, the

barrier epoch management should provide more BLP in the

memory request sequence that being sent to the memory

controller. The detailed BLP-aware barrier epoch management

method is introduced as follows.

Terminology and Problem Definition.

First, we define the terminology for the simplicity of ref-

erence. There are t BROI entries. The barriers (number n)

in BROI entry i divide requests into several sets: s0
i , s1

i ,..., sn
i .

The scheduling for this entry must follow this order: sn
i < ... <

s1
i < s0

i , which means no request in a later set can be scheduled

until the previous set has been processed completely. There are

several special sets we want to emphasize, listed in Table I.

Table I
THE REQUEST SET DESCRIPTIONS.

SubReady-SET: Ri The first request set in BROI entry i,

Ri = s0
i ,0 ≤ i ≤ t

Ready-SET: R The first request sets in all BROI entries,

R = s0
0 ∪ ...∪ s0

i ...∪ s0
t

Next-SET: Ni The second request set in BROI entry i,

Ni = s1
i ,0 ≤ i ≤ t

Sch-SET: Sh The requests to be scheduled,
Sh ∈ R

Set BLP: We use the banki(SET ) function to represent

whether there are requests of this SET in the bank i. Then

we quantify the BLP(SET ) of a set as follows,

BLP(SET ) =
b

∑
i=0

banki(SET )), (1)

where the bank number is b.

Problem Formulation: Having the Ri, Ni, and the bank

location of every request in these sets as inputs, we want to

find the Sch-SET with maximum BLP(Sch-SET).

Scheduling Algorithm.

To maximize the utilization of memory bus, we intend to

schedule the requests with maximum bank-level parallelism

from every subReady-SET. Since the subReady-SET will be

updated if all the requests in it are scheduled completely,

we also expect the Next-SET, which will become the new

subReady-SET, has more bank-level parallelism. Hence, the

key principle of the BLP-aware barrier region scheduling

technique is to give the higher priority to the requests in

subReady-SET of the ith BROI entry, if it delivers larger BLP

and its Next-SET will also bring more bank-level parallelism

at the soonest. The algorithm consists of four main steps:

i) Priority calculation. Calculate the priority of requests in

Ready-SET. The requests belonging to the same subReady-SET

would have the same priority. The priority calculation method

is shown by the following equation.

Priority(Ri) = BLP(R−R0
i +R1

i )−σ · size(R0
i ), (2)

where σ a weighted parameter which indicates that the BLP

is more important than the size during priority calculation.

Taking the Figure 6(c) as an example, the initial Ready-

SET is (1.1, 1.2, 2.1, 3.1). We give the highest priority to

request 2.1, because 1) completing 2.1 request can bring the

request 2.2 to Ready-SET which will introduce additional bank

parallelism by adding new request from Bank1, and 2) the 2.1

can bring additional bank parallelism sooner than set (1.1, 1.2).

ii) Enqueue requests in bank-candidate queues. Put the

updated requests of Ready-SET to the Bank-Candidate Queue

according to the request location. In the example shown in
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Figure 6, the requests (1.1, 1.2, 2.1, 3.1) will be enqueued

into Bank0-candidate queue.

iii) Output Sch-SET. Output the request with the highest

priority in every bank-candidate queue to form the Sch-SET.

In this example, the Sch-SET of current iteration is (2.1) under

our scheduling algorithm.

iv) Update Ready-SET. When one SubReady-SET com-

pletes, BROI controller schedules a barrier to memory con-

troller, and then updates the Next-SET next to the completed

SubReady-SET as the new SubReady-SET. Ready-SET is up-

dated meanwhile, formalized as follows.

Ri = Ni; Ni = s2
i ,R = R0 ∪ ...∪Ri ∪ ...∪Rt (3)

In the example, the request (2.2) will become the new

SubReady-SET of BROI Entry 1. The Ready-SET will be

updated as (1.1, 1.2, 2.2, 3.1) accordingly.

Discussion.

1) Interference between Remote and Local requests. The

strategy to schedule between local and remote requests is

based on the following two observations: 1) The response time

of remote requests are about 10x us, which is inherently much

larger than the local memory access. Hence we can give the

higher priority to local requests during scheduling because

they are more latency-sensitive. 2) The remote memory ac-

cesses will devour the memory bandwidth if the scheduling

strategy is throughput-oriented. Because the remote persistent

requests are accessing contiguous memory addresses, which

easily leverage row buffer locality for better memory through-

put, so the memory controller is likely to schedule the remote

requests with higher priority. However, it is unwise to give

higher priority to the latency-nonsensitive requests. Based on

these observations, the BROI controller will schedule the local

requests with higher priority and keep the remote requests

waiting until the memory controller queue is in low utilization.

To avoid starvation, the remote requests will be flushed to

memory devices if the blocked time of the remote requests

exceeds the threshold.

2) Address mapping strategy. The address mapping strategies

exert a great impact on the intrinsic bank-level parallelism

of requests. We use the similar address mapping strategy

in [58] which strides the consecutive groups of row-buffer-

sized persistent write operations to different memory banks,

while contiguous persistent writes of less than or equal to

the row-buffer size are still mapped to contiguous data buffer

space to achieve high row buffer locality. This method op-

timizes both the BLP and row buffer locality for memory

scheduling. In the following evaluation, all the experiments

are conducted using such a stride address mapping strategy.

E. Hardware Implementation and Overhead

The storage overhead for each persist buffer entry is 72B

and each persist buffer requires 8 persist buffer entries. We also

need additional 320B storage for dependency tracking and 8B

for address range recording.

The BROI controller consists of BROI queues and the

scheduling logic. For local BROI queues, there are eight

BROI entries, which is equal to the number of cores. Every

BROI entry has 8 units to store the requests information

including the index in the persist buffer (4 bits each). Every

BROI entry is equipped with two Barrier Index Registers

to indicate the barrier location. Hence, the Barrier Index

Register has three bits to indicate the barrier location in the

BROI entry. Such implementation is sufficient for two reasons:

1) the barrier epoch scheduling only concerns the first two

sets, the SubReady-SET and the Next-SET in BROI entries;

2) most epochs are very small in applications. As shown

in the statistics of previous work, most epochs are singular

epoch with only one request [39]. The scheduling logic first

calculates the priority of request according Equation 2 and

then schedules the requests with highest priority in Ready-

SET. There is no iterative computing logic in scheduling

implementation, which is fairly simple.

For remote BROI queues, there are two BROI entries, equal

to the number of RDMA channels. There is a length counter

for Remote BROI queue to identify the epoch boundary. Since

we use address range to identify the BROI, and the remote

requests are sequentially accesses to a block of memory region,

we only reserve eight units in the remote entry with one Barrier

Index Register.

The BROI controller was implemented in Verilog and built

with the commercial logic synthesis tool Synopsys Design

Compiler (DC) to evaluate the area and power overhead in

a 65nm process. The experiment results show that the latency

is about 0.4ns and we count the extra scheduling cycle in the

McSimA+ for performance evaluation. It is not on the critical

path and would not affect the working frequency. The area

overhead is 247 um2 and the power overhead is 0.609 mW,

which is negligible for data center server design. The overall

hardware overhead is summarized in Table. II.

Table II
HARDWARE OVERHEAD.

Dependency Tracking 320B
Persist Buffer Entry 72B
Local BROI queues 32B per core

2 Index Register: 2x3bit
Remote BROI queues 4B overall

2 Index Register: 2x3bit

Control Logic 247um2,0.609mW

V. SYSTEM DESIGN

A. Support for Network Persistence

Our system can be built based on the similar programming

model that proposed by the Microsoft [49]. The applications

use native file API or load/store instructions to call the service

of NVM file system or do the MMU mapping. The NVM

file system or libraries call the specialized RDMA write

semantic for persistent requests. The difference is that the

logging engine of file system or NVM libraries can send the

asynchronous RDMA pwrite verb instead of the sequentially

blocked way which issues the second RDMA pwrite only after

the first one is completely durable.

RDMA Stack Support. To apply the buffered strict persis-

tency in remote persistent memory, we need the support from
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services [20], [31]. Therefore, we use the DDIO-on solution

for performance evaluation in our work. The RDMA read after

write cannot assure that the data has been persisted when Di-

rect Data I/O (DDIO) technique is enabled in target node [17].

Because the DDIO technique supports direct communication

between the network and the last level cache [2], [20]. When

the DDIO is on, the RDMA requests go to the cache and

the RDMA read operation cannot make sure the data is from

cache hierarchy (still volatile) or memory devices (persisting

completed). In this work, the system adopts the advanced

network controller to send the persist ACK back to the remote

NIC, instead of using RDMA read after write approach. The

advanced NIC approach is used in both baseline and our work.

VI. EXPERIMENT SETUP

This section introduces the experimental setup and bench-

mark configurations for performance evaluation.

A. Simulation Framework

We evaluate the system performance from both the client-

side and NVM server-side perspective. The NVM server

processes requests from both the local and remote nodes.

The memory throughput and local application operational

throughput of the NVM server are evaluated in our work. The

client sends persistent requests to NVM server and waits the

data to be persisted. We evaluate the application throughput

of the client with different network persistence strategy.

To evaluate the NVM server performance, we first conduct

experiments with McSimA+ [3] to evaluate the local memory

system performance with the input of both local and remote

requests. McSimA+ is a Pin-based [36] cycle-level multi-core

simulator. The configurations of the processor and memory

system used in our experiments are listed in Table III. Each

processor core is similar to an Intel Core i7 core. The pro-

cessor incorporates SRAM-based volatile private and shared

caches and employs a two-level hierarchical directory-based

MESI protocol to maintain cache coherence. The cores and

LLC cache banks communicate with each other through a

crossbar interconnect. The byte-addressable NVM (BA-NVM)

is modeled as off-chip DIMMs compatible with DDR3. The

timing parameters of BA-NVM is generated by NVSim [15],

as shown in Table III.

To evaluate the application performance of client system, we

emulate persistence latency by inserting delays into the source

code of applications or NVM libraries, similar as the prior

work [18], [19], [51], [57]. The persistence latency consists

of RDMA round trips and persisting procedure in the NVM

server. The RDMA round trip latency is derived from network

model which correlates the average time with epoch size based

on thousand times of running. The persisting procedure latency

in NVM server side is derived from McSimA+ simulation.

We take the Whisper benchmarks [39] as the client-side

benchmarks and emulate the replication scenario by inserting

remote persistence latency in Whisper logging engine. The

Table III
PROCESSOR AND MEMORY CONFIGURATIONS.

Processor Similar to Intel Core i7 / 22 nm
Cores 4 cores, 2.5GHz, 2 threads/core
IL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
DL1 Cache 32KB, 8-way set-associative,

64B cache lines, 1.6ns latency,
L2 Cache 8MB, 16-way set-associative,

64B cache lines, 4.4ns latency
Memory Controller 64-/64-entry read/write queues

8GB, 8 banks, 2KB row
NVRAM DIMM 36ns row-buffer hit, 100/300ns

read/write row-buffer conflict [18], [27].

Table IV
A LIST OF EVALUATED BENCHMARKS.

u-bench Footprint Description

Hash 256 MB Searches for a value in an
[13] open-chain hash table. Insert

if absent, remove if found.
RBTree 256 MB Searches for a value in a red-black
[59] tree. Insert if absent, remove if found

SPS 1 GB Random swaps between entries
[59] in a 1 GB vector of values.

BTree 256 MB Searches for a value in a B+ tree.
[9] Insert if absent, remove if found

SSCA2 16 MB A transactional implementation
[7] of SSCA 2.2, performing several

analyses of large, scale-free graph.

Whisper [39] Workload Configuration

tpcc 4 clients, 400K transactions, 20%– 40% writes
ycsb 4 clients, 8M transactions, 50%– 80% writes
C-tree 4 clients, 100 INSERT transactions
Hashmap 4 clients, 100 INSERT transactions

Insert if absent, remove if found
Memcached memslap/4 clients,100K ops, 5% SET

client-side nodes run with Xeon E5-2680 (Sandy Bridge)

processors at the frequency of 2.5GHz.

B. Benchmarks

Both microbenchmarks and the Whisper persistent bench-

mark [39] are evaluated in our experiments. To verify the

effectiveness of barrier epoch management strategy, we use

microbenchmarks to evaluate the persistent memory system

throughput in local node (NVM server). Specifically, we

repeatedly update persistent memory through various data

structures including hash table, red-black tree, array, B+tree,

and graph. These data structures are widely used in related

applications such as databases and file systems. Table IV

describes the details of these benchmarks. These benchmarks

are compiled in native x86 and run on the McSimA+ sim-

ulator. Then we gather the remote memory access traces of

these benchmarks and feed them into McSimA+ simulator

to simulate the memory performance with local and remote

requests as inputs.

To evaluate the overall system performance with network

persistent requests, we implement experiments based on Whis-

per [39], the configuration of which is shown in Table IV.
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